
Traffic-Aware Firewall Optimization Strategies

Subrata Acharyay, Jia Wangx, Zihui Gex, Taieb F. Znatiy;k and Albert GreenbergxyDepartment of Computer Science,kTelecommunications Program
University of Pittsburgh, Pittsburgh, PA 15260xAT&T Labs Research, Florham Park, NJ 07932

(sacharya, znati)@cs.pitt.edu
(jiawang, gezihui, albert)@research.att.com

Abstract— The overall performance of a firewall is crucial
in enforcing and administrating security, especially when the
network is under attack. The continuous growth of the Internet,
coupled with the increasing sophistication of the attacks,is
placing stringent demands on firewall performance. In this paper,
we describe a traffic-aware optimization framework to improve
the operational cost of firewalls. Based on this framework,
we design a set of tools that inspect and analyze both multi-
dimensional firewall rules and traffic logs and construct the
optimal equivalent firewall rules based on the observed traffic
characteristics. To the best of our knowledge, this work is
the first to use traffic characteristics in firewall optimization.
Furthermore, we develop a novel adaptation mechanism that
dynamically detects anomalous traffic behavior and adaptively
alters the firewall rules to avoid serious performance degradation
due to the traffic anomaly. To evaluate the performance of
our approaches, we collected a large set of firewall rules and
traffic logs at tens of enterprise networks managed by a Tier-1
service provider. Our evaluation results find these approaches
very effective. In particular, we achieve more than 10 fold
performance improvement by using the proposed traffic-aware
firewall optimization.

I. Introduction

A firewall is a combination of hardware and software used
to implement a security policy governing the flow of network
traffic between two or more networks. In its simplest form,
a firewall acts as a security barrier to control traffic and
manage connections between internal and external network
hosts. The actual means by which this is accomplished varies
widely, and ranges from packet filtering and proxy service
to stateful inspection methods. A more sophisticated firewall
may hide the topology of the network it is employed to
protect, as well as other information, including names and
addresses of hosts within the network. The ability of a firewall
to centrally administer network security can also be extended
to log incoming and outgoing traffic to allow accountabilityof
user actions and to trigger alerts when unauthorized activities
occur.

Firewalls have proven to be useful in dealing with a large
number of threats that originate from outside a network. They
are becoming ubiquitous and indispensable to the operationof
the network. The continuous growth of the Internet, coupled
with the increasing sophistication of attacks, however, is
placing further demands and complexity on firewalls design
and management.

Increased firewall complexity, undoubtedly, brings with it
increased vulnerability and reduced availability of individual
network services and applications. Analysis of real config-
uration data has shown that corporate firewalls are often
enforcing rule sets that violate established security guidelines.

Furthermore, the need to deal with large set of diverse security
policies and rules imposes additional burden on firewalls,
thereby rendering the performance of the firewall highly crit-
ical to enforcing the network security policy. In this context,
the protection that a firewall provides becomes as good as, not
only the policies it is configured to implement, but equally
importantly the speed at which it enforces these policies.
Under attack or heavy load, firewalls can easily become a
bottleneck. As the network size, bandwidth, and processing
power of networked hosts continue to increase, there is a
high demand for “optimizing” firewall operations for improved
performance.

Multi-dimensional firewall optimization is proven to be NP-
hard [1], [2]. This has led the research community to focus on
developing various “optimization” heuristics to make firewalls
more efficient and dependable. Despite significant progressin
the design of firewalls, the techniques for firewall optimization
remain static, and as such, fail to adapt to the continuously
varying dynamics of the network. This is mostly due to their
inability to take into account the traffic characteristics logged
by the firewall, such as source and destination, service requests
and the resulting action taken by the firewall in response
to these requests. Moreover, current firewall designs do not
support adaptive anomaly detection and countermeasure mech-
anisms to deal with short and long term attacks. Consequently,
they run the risk to become unstable under attack.

The objective of this paper is to address the above shortcom-
ings and develop a sound and effective “toolset” to accelerate
firewall operations and “adapt” its performance to the dynam-
ically changing network traffic characteristics. Achieving this
goal, however is challenging, as the number of policies and
security rules a firewall has to enforce for enterprise networks
is large. In addition, there is a need for maintaining high
policy integration. This is further compounded by the limited
resources of firewalls relative to the increased ability of the
network to process and forward traffic at extremely high speed.

In this paper, we focus onlist-basedfirewalls, as they are
the most widely used firewalls. The major contribution of
this paper is the design of a Traffic-aware Firewall Optimizer
to study, analyze, and optimize multi-dimensional list-based
firewalls. To the best of our knowledge, this is the first work
which considers traffic characteristics in optimizing firewall
performance. A unique feature of this toolset is its adaptive
anomaly detection and countermeasure mechanism, used to
dynamically alter the firewall rule set to improve performance.
The experimental study shows that the firewall optimizer is
successful in dynamically exploiting the traffic characteristics
to significantly enhance the performance of the firewall. Re-
sults show that operational cost of firewalls is reduced to less

than 7% of the initial unoptimized rule set.
The rest of the paper is organized as follows: In Section II,

we briefly review related work. In Section III, we describe a
framework for firewall optimization and argue about the im-
portance of using traffic characteristics in optimizing firewall
operations. In Section IV, we discuss the various optimization
strategies. We present a discussion of the experimental results
in Section V. Finally, we provide the conclusion in Section
VI.

II. Related Work

Due to the enormous impact of firewalls on network security,
there has been a significant amount of research work on how
to optimize firewalls. Much of this work, however, has been in
the area of firewall rule and policy modeling and optimization.
Few attempts have been made to achieve multi-dimensional
firewall optimization. In [3], a tool to model firewall policies
and detect conflicts is described. In this work, the authors focus
mainly on single prefix rules. Similarly, in [4] a constraint
logic programming (CLP) framework to analyze rule sets is
discussed. These research work offer a good insight in how to
model and analyze rule sets. Neither of these works, however,
consider optimizing a multi-dimensional rule set.

The approach proposed in [5] optimizes the firewall rule
set using Directed Acyclic Graphs (DAGs) to describe rule
dependencies. However, it does not provide a methodology to
build the DAG. Furthermore, for complex graphs this scheme
is ineffective. The approach proposed in this paper removes
all the dependencies and hence it becomes possible to achieve
optimum rule ordering. In [6], a framework to analyze and
optimize rule sets is described. However, the authors do not
provide specific details on how optimization can be achieved
within the proposed framework. Furthermore, this work does
not consider the traffic characteristics in its optimization
approach. The proposed accelerating firewall toolset differs
from the above approaches, in its unique approach to consider
firewall traffic characteristics in optimizing firewall rulesets.

III. List-Based Firewalls

This study focuses on list-based firewalls, a widely used class
of firewalls for large networks. In this section, we first discuss
briefly the basic structure of a list-based firewall. We then
define rule redundancy and dependency relationships in a list-
based firewall.

A. List-based firewalls

A firewall security is typically defined by a set of rules. A
rule is a multi-dimensional structure, where each dimension
is either a set of network fields or an action field. A network
field can besource address, a destination address, a service
type, a protocol number, and aport number. An action field
can be eitheracceptor deny, or others (e.g. redirect to a
server that perform further processes etc). Formally, a rule R
can be represented as:R = [�1;�2; � � � ;�k; �℄, where�j ,
represents network fields and� is an action field. In an Internet
environment, a typical rule can be represented as follows:< sr = fs1; s2; � � � ; sng; dst = fd1; d2; � � � ; dmg;srv = f�1; �2; � � � ; �lg; ation = fdropg >;
wheresi represents a source IP address,di a destination IP
address, and�i a service type.

In list-based firewalls, rules describing the network security
policies from a “priority” list. The priority of a rule, also
referred to as itsrank, is based on its position within the list.
Earlier occurring rules have higher rank than later ones.

List-based firewalls work by logically examining the rules
in sequential order. For each packet, the first matching rule
determines the action taken by the firewall. This is referredto
as thefirst hit principle1.

B. Rule redundancy and dependency

Rule redundancy in list-based firewalls can be of two types,
namely internal or external. For a given rule, internal re-
dundancy occurs when at least one of its fields contains
duplicate entries. Internal redundancy can also occur if there
are suboptimal representations of entries within a field. For
example, if one of the fields of the rule represents a network
address, the appearance of the address values192.168.1.0/24
and192.168.0.0/24within this same field constitutes an inter-
nal redundancy. This apparent redundancy can be removed by
replacing the above address values with192.168.0.0/23.

In list-based firewalls, external redundancy between two
rules occurs when one of the rules is a superset of the other
one and appears earlier in the firewall rule set. This makes
the second rule redundant with respect to the first one, as
all traffic for which the second rule applies is filtered by the
first rule. Formally, ruleR2 is said to be externally redundant
with respect to ruleR1, if and only if: (i) R1 is a superset
of R2, andR2’s rank> R1’s rank. Externally redundant rules
can be removed without violating the semantic integrity of the
security policy.

Two rules are dependent if they mutually exhibit a prece-
dence relationship. Formally, rulesR1 andR2 are dependent
if the following conditions are satisfied: (i)R1 and R2 are
not disjoint, (ii) R2’s rank> R1’s rank, and (iii)R1’s action
field ! = R2’s action filed. As a consequence, if two rulesR1
andR2 are dependent, thenR2 cannot be moved beforeR1,
without violating the semantic integrity of the rule set.

Two rules are said to be disjoint if they differ at least in one
of their fields. Formally, ruleR1 = [�11;�21; � � � ;�k1 ; �1℄ andR2 = [�12;�22; � � � ;�k2 ; �2℄ are disjoint if and only if there
exists at least onei such as�i1T�i2 = ;.

IV. Firewall Optimization Framework

As stated above, firewall policies of an actively managed
enterprise network may often change in response to new
services, new threats or underlying network changes. The
intrinsic complexity of the firewall policies makes it difficult to
track down these changes. As a consequence, inefficiency, such
as redundancies between rules and suboptimal representations
of rule sets and fields within a rule, arise. The Traffic-aware
Firewall Optimizer (TFO) takes a novel approach and uses
traffic characteristics to address these problems. The overall
architecture of the TFO is depicted in Figure 1. The figure
also illustrates the optimization process used to optimizea
raw initial firewall rule set.

The process starts with thePre-Optimizationphase. The
main objective of this phase is to remove all redundancies
in the rule set. At the end of this phase, all internal and
external redundancies in the rule set are removed. Unless there

1It is to be noted that not all firewalls work with the first hit principle, also
there are list-based firewalls which do not use first hit principle.

Online Adaptation

Optimized
Rule set

Traffic Based

Disjoint Set
Creation

Rule Set Based

Traffic Change

Disjoint Set
Merging

Total Reordering

Default Proxy

Hot Caching

Initial
Rule Set

Pre-Optimizer

Traffic Log

Online Adaptation

Optimized
Rule set

Traffic Based

Disjoint Set
Creation

Rule Set Based

Traffic Change

Disjoint Set
Merging

Total Reordering

Default Proxy

Hot Caching

Initial
Rule Set

Pre-Optimizer

Traffic Log

Fig. 1: Traffic-Aware Firewall Optimizer

is a change in the current firewall policy, the pre-optimization
phase is performed only once.

The core component of the optimization process uses arule
set basedoptimizer and atraffic basedoptimizer. Both opti-
mizers cooperate to adaptively optimize the rule set in response
to dynamically changing traffic characteristics. This coopera-
tion is achieved through a dynamic feedback mechanism. The
rule set based optimizer takes as input the pre-optimized rule
set and produces a rule set based optimized set of rules. This
set is then fed to the traffic based optimizer. Using the current
traffic log, the traffic based optimizer produces an optimum
rule set which reflects the current characteristics of the traffic
without violating the semantic integrity of the initial rule set.
The traffic-aware optimized rule set is used by the firewall
to enforce the security policy. This continues until changes
in the traffic characteristics take place. In response to these
changes, the adaptive optimization process is re-invoked using
the current rule set and a new traffic-aware optimized rule
set is produced. This process continues iteratively, untilthe
enterprise network security administrator changes the rule set.
When this occurs, the new rule set is pre-optimized before the
rule-based and traffic-based optimizers are invoked. In rest of
the section we discuss the basic mechanisms used by each of
these optimizers and their collaborative interactions.

A. Rule Set Based Optimization

The rule set based optimizer operates exclusively on the rule
set, with no additional consideration of other factors impacting
network or traffic behavior. The optimizer continuously seeks
to create new definitions in order to make rules in the current
rule set disjoint. This, in turn, provides the traffic based
optimizer with full flexibility to re-order rules based on traffic
characteristics.

The rule based optimizer is composed of two basic com-
ponents, namely theDisjoint Set Creator (DSC)and the
Disjoint Set Merger (DSM). These two components are typi-
cally executed sequentially. Initially DSC detects and removes
dependencies from the current rule set. Then it creates new
rule definitions in order to make the entire rule set disjoint. It
is to be noted that this phase may lead to an increase in the
rule set size. This is due to the fact that more rules may be
needed to define each set of dependent rules. It is typical that
there is only a small portion of rules that dependent on other
rules2.

The main task of DSM is to merge the rules of the disjoint
rule set produced by DSC in order to optimize the rule set

2In the analyzed firewall dataset, this ratio is around(1=15)th of the total
number of rules.

Rule Src Dst Srv ActionR1 s1; s2; s3 d1; d2; d3 �1 dropR2 s2; s3; s4 d2; d3; d4 �1 acceptR3 s5 d4 �1 accept

TABLE I: Pre-optimized rule set:SI
Rule Src Dst Srv ActionR1 s1; s2; s3 d1; d2; d3 �1 dropR12 s4 d2; d3; d4 �1 acceptR22 s2; s3 d4 �1 acceptR3 s5 d4 �1 accept

TABLE II: Disjoint rule set:SD
representation. The merging process iteratively selects one
rule and tries to merge it with other rules. Merging occurs
between rules with same action field, to preserve semantic
integrity. Merging between two rules occurs when at most
one field has different values in the rules. Upon completion of
this optimization step, the rule set size is reduced to its most
concise representation.

Notice that it is possible to reduce the rule set based
optimization strategy to rule merging only, without the creation
of disjoint rules. Such an approach still results in improved rule
set representation, while minimizing the processing overhead.
Combining disjoint set creation and merging, however, enables
the optimizer to effectively capture the dynamics of the traffic
characteristics, thereby resulting in an optimized rule set
representation.

To illustrate the process of creation of disjoint rules out of
an initial pre-optimized set of rules, and merge the resulting
disjoint rules into a concise rule set representation, consider
the example of a pre-optimized rule set,SI , as shown in
Table I.

Notice thatR2 is dependent onR1, since the source and
destination fields ofR2 intersect with the corresponding fields
of R1, while the action fields of the two rules are different.
These rules can be made disjoint, without violating semantic
integrity. This is achieved by keepingR1 unchanged and
forking R2 into two new rules,R12 andR22, resulting in the
disjoint rule set,SD, as shown in Table II.

As observed from the above example, creating a new
disjoint rule set increases the size of the original rule set. The
new set size can be further optimized by merging ruleR22 andR3 into R4, to produce the final rule set,SF , as shown in
Table III.

Rule Src Dst Srv ActionR1 s1; s2; s3 d1; d2; d3 �1 dropR12 s4 d2; d3; d4 �1 acceptR4 s2; s3; s5 d4 �1 accept

TABLE III: Final rule set:SF
Our DSC scheme looks similar to [7]’s decorrelation al-

gorithm, but it uses a multi-dimensional tree instead of single
dimensional tree to improve the runtime. Furthermore, we gain
much better optimization using DSM, that the above work does
not consider.

B. Traffic Based Optimization

The traffic based optimizer operates on the rule set produced
by the rule set based optimizer. The optimizer uses current

traffic characteristics to determine the order in which rules in
the rule set are to be invoked to optimize the operational cost
of the firewall. To achieve this goal we use four schemes,
namely hot caching, total re-ordering, default proxy, and
online adaptation.

The hot cachingrevolves around the concept of ahot rule
set. A rule is said to behot if it experiences a large number
of traffic hits. The basic idea of this approach is to identifya
small set of hot rules, relative to the original rule set, andcache
these rules at the top of the rule set. Such a strategy results
in dealing with a large amount of traffic hits, very early in
the inspection process, thereby reducing the overall firewall
operational cost.

Contrary to the first scheme which focuses only on a
small set of rules, thetotal re-orderingscheme takes a more
aggressive approach and performs a total re-ordering of the
rule set based on the current traffic characteristics. This re-
ordering is achieve based on a priority assignment which
takes into consideration, not only the frequency at which the
rule is invoked, but equally importantly the rule size. More
specifically, the priority of rule,Ri, can be expressed as:Pr(Ri) = hit ount(Ri)size(Ri) . Notice that ordering firewall rules
based on the above priority assignment achieves the lowest
expected cost. We provide a proof of this in [8].

The default proxyis the third scheme and is based on the
observation that, during traffic inspection, the default deny
action is heavily invoked, in comparison to actions resulting
from other rules. In a list-based firewall, the default deny
action is “enforced” when a packet fails to match any of the
rules within a rule set. A relatively high hit ratio of the default
deny action is, therefore, bound to increase considerably the
overall operational cost of the firewall. The main reason for
this increase is that, before a default deny action is enforced
and the packet is dropped, all rules in a rule set have to
be examined. This is mainly caused by the absence of any
representation of the default deny action in the rule set. This,
in turn, suggests that the addition of drop rules may alleviate
the problem. Adding drop rules, however, brings about several
issues to be addressed, including how may rules must be
created, what values should be be associated with these new
drop rules and what should be their priorities.

Thedefault proxyscheme addresses these issues by creating
a set of drop rules. The field values of these rules are derived
from the corresponding fields of the packets dropped by the
default deny action. Initially, the fields of a drop rule are set
to any, except for the action field which is set todrop. The
drop rule can be represented as:<�1 : any; �2 : any; � � � ;�n : any; ation = drop>

As packets are dropped by default deny rule, the values of
the drop rule are set to the values of corresponding fields of the
dropped packets. This corresponds to the hit rate of the drop
rule. The priority each newly created drop rule is computed
based on its hit rate and its size in a similar manner as in total
re-ordering.

The online adaptationscheme encompasses two basic
mechanisms:profile based re-orderingand anomaly detec-
tion and countermeasure. Profile based re-ordering uses traf-
fic characteristics to build a long-term rule hit profile, of-
fline. The approach used to build this profile exploits traffic
variability[9]. The resulting rule hit profile is then used to

: rule (
: src (: srv (

: 10.10.10.2 : ospf
: 10.10.10.3 : traceroute
: 10.10.10.4 : echo-requests
: 10.10.10.5 : ping-replies
))

: dst (: action(
: 10.20.10.1 : accept
: 10.20.10.4)
: 10.20.10.5)
)

Fig. 2: Rule Structure

detect long and short term anomalies and adapt the rule set
accordingly.

The basic idea ofanomaly detection and countermeasure
is to compare the short term traffic pattern with a long term
traffic profile. The later is used to optimize the firewall rules. If
a significant discrepancy exists between the short term traffic
pattern and long term profile, and this discrepancy can result
in bad predicted performance, the rules are adjusted as a
countermeasure against anomalies. Adjusting the rules entails
rule re-ordering and adding explicit reject rules.

Note that anomalies can be either transient or long-lived. If
the anomaly analysis reveals a potential performance hazard,
a temporary re-ordering of rules is performed. If a given
anomaly occurs consistently then it is absorbed into the long
term profile. The same anomaly detection and countermeasure
procedure is also applied to the default deny rule. Depending
on any potential performance hazard created by a default deny
rule, a temporary default deny rule is added to the short term
profile. If the pattern is repetitive then the new default deny
rule is added to the rule set based on its priority and hence
absorbed into the long term profile.

V. Experimental Study

The first part of this section briefly describes the data used in
this performance study. The second part provides an analysis
of the dataset prior to optimization.3 The last part describes
the metric used to assess the performance of the proposed
optimizer, and discusses the results of the evaluation study.

A. Data set description

The data set used in the experimental study is obtained from a
list-based firewall managed by a large Tier-1 ISP for its partner
networks. The Tier-1 ISP provides secure access to and from
about 50 business partners. The data set consists of firewall
rule sets and traffic logs.

Each rule set consists of several thousand rules. Each rule
is a multi-dimensional structure of tuples. A rule set contains
on average one million tuples. Figure 2 shows an instance of
a rule structure. The dimensions of the rule include the source
address,sr, the destination address,dst, the service types,srv, and the action. Each dimension contains multiple values.
An instance of a tuple of this rule is< sr : 10:10:10:2; dst :10:20:10:1; srv : ospf ; ation : aept >. Figure 3 depicts
an entry of the firewall traffic log. The firewall logs one entry
per session.

B. Data set analysis

The first study of the dataset measures the accept and drop
hit rates. It is widely believed that drop rules, especiallythe
default deny reject rule, are the ones which contribute the most

3Since the exact numbers of flow rate or hit count are considered proprietary
information, we omit showing the real values on the y-axis ofthe figures

num;date;time;orig;type;action;alert;i/f_name;i/f_dir;
product;src;dst;s_port;service;proto;……………… ..

1;27Jul2005;23:59:04;10.10.10.1;log;accept;;qfe1;
inbound;X;10.30.10.1;10.20.10.1;53480;161;udp ;;;

Fig. 3: Traffic Log Instance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Day of the week

H
it

co
un

t i
n

pe
rc

en
ta

ge

Accepts

Drops

Fig. 4: Accepts vs. Drop Statistics

to the operational cost of the firewall. Contrary to this belief,
the results depicted in Figure 4 show that the accept hit rateis
on average 3.5 times higher than the drop hit rate. These results
suggest that both accept and drop rules should be considered
in the firewall optimization.

The second study analyzes the distribution of rule hits based
on traffic characteristics. Figures 5 and 6 show the distribution
of the top ten hit rules over a weekly and daily period,
respectively. The results also show that heavy hit rules are
not appropriately ranked in the rule set. This suggests that,
in order to reduce the operational cost of the firewall, heavy
hit rules, which have lower ranks, should be assigned higher
ranks. Upon reordering, rule 3 and 37 must be ranked 1 and
2, as they have the highest hits.

To understand the severity of the default deny hits, an
analysis of the hit distribution over hours for a typical dayof a
given rule set is conducted. Results in Figure 7 show that the
default deny rule contributes heavily to the operational cost of

3 115 61 40 41 64 987 989 1097 985

Rule rank

H
it

co
un

t

Fig. 5: Rule Hit Distribution: Over One Week

3
11

5 61 40 41 64 98
7

98
9

10
97 98

5

Rule rank

H
it

co
un

t

09/13/05

09/14/05

09/15/05

09/16/05

09/17/05

09/18/05

09/19/05

Fig. 6: Rule Hit Distribution: Over Days

3 37 40 41 61 64 93 109 115 407 1000 1013 1097 1868

Rule rank

H
it

co
un

t i
n

a
gi

ve
n

ho
ur

 i
n

0th
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
11th
12th
13th
14th
15th
16th
17th
18th
19th
20th
21th
22th
23th

High default deny rule hit

3 37 40 41 61 64 93 109 115 407 1000 1013 1097 1868

Rule rank

H
it

co
un

t i
n

a
gi

ve
n

ho
ur

 i
n

0th
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
11th
12th
13th
14th
15th
16th
17th
18th
19th
20th
21th
22th
23th

High default deny rule hit

Fig. 7: Default Deny Rule Hits

the firewall. Moreover, a closer look at 3 month firewall data
reveals that on average about 65% of the tuples are consistently
repeated in the default deny hit tuples. This shows that there
is a large number of consistent default deny hit tuples, which
could be placed earlier in the rule set with the potential to
enable considerable cost improvement.

The outcome of the above studies clearly shows that consid-
ering traffic characteristics in firewall optimization is crucial
to achieve significant improvement in performance.

C. Evaluation study

In this section, we first describe the performance metrics. We
then present the performance results of the evaluation study.

1) Performance evaluation metrics: The main factor
that affects the performance of a firewall is the processing
overhead due to packet inspection. In order to capture the
overhead cost incurred by a firewall to process a rule and
enforce the security policy, two metrics are defined. The first
metric, denoted asrule size(), measures the size of a given
rule in terms of the number of bits necessary to determine
unambiguously a match between the rule definition and the
corresponding fields of a packet under inspection. The assump-
tion underlying therule size()metric stems from the fact that
the complexity of a matching operation is proportional to the
size of the rule. Formally, given a ruler, rule size(r) can be
defined as:rule size(r) = (PSp;Dpf�1 � kspk+ �2 � kdpkg+� �Ns � fkPrrk+ kPorkg (1)

where, �1; �2, and � are weight parameters,Sp and Dp
are respectively the set of source and destination prefixes
which occur within the definition of the rule,sp and dp are
the bit representation of the source and destination prefixes,
respectively,Ns is the number of services defined within the
rule, andPrr andPor are the bit representation of the protocol
and port identifiers, respectively.

The second metric used in our experimentation is the cost
of operating on a given rule set. This cost depends on the
rule’s rank and size, and on how often the rule is invoked by
the firewall. Formally, given a set of rulesr1; r2; : : : ; rk , the
cost of a given rule,ri, ost(ri), is defined as follows:

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Initial operational
(unoptimized)

Pre-optimized Merging rules w/o
disjoint

Disjoint set creation
(DSC)

Disjoint set merging
(DSM)

Techniques

R
ul

e
se

t s
iz

e
in

 p
er

ce
nt

ag
e

Fig. 8: Rule Set Based Optimization: Size-basedost(ri) = hit ount(ri) � P8rk2Pri rule size(rk) (2)

where,Pri is the set ofri’s predecessors in the list-based set
of rules.

Using the above metrics, the aim of optimization is to reduce
the rule set size and consequently the processing time of the
rule set. This in turn reduces the overall firewall operational
cost.

2) Performance evaluation results: In order to evalu-
ate the impact of the various optimization strategies on the
firewall performance, an experimental simulation-based study
is conducted. The simulation was run on SunOS 5.8 over a
Sun-Fire-15000. Results show that the optimization strategies
lead to considerable firewall performance improvement.

3) Rule set based optimization: The results depicted in
Figure 8 show that the final rule set size after optimization is
similar to the size of the initial rule set, but most importantly,
the rules in the resulting rule set are all disjoint. This provides
the system administrator full flexibility to re-order the rules
based on traffic characteristics, as appropriate.

4) Traffic based optimization: In this experiment, traffic
based optimization are applied to the firewall rule set. Results
in Figure 9 demonstrate a significant decrease in the number
of rules. More specifically, the results show that nearly 20%
of initial operational rules are eliminated.

The final experiment is aimed at evaluating the impact of
the various optimization strategies on the firewall operational
cost. The results depicted in Figure 10 indicate that the
optimization strategies, applied to the pre-processed dataset,
result in reducing the initial operational cost to around 6.3%.

The results clearly indicate that the proposed traffic-aware
optimization strategies have great potential to significantly
improve the performance of firewalls and reduce their oper-
ational cost. A more extensive analysis of the schemes and
experimental results can be found in [8].

VI. Conclusion and Future Work

This paper studies the problem of firewall optimization in de-
tail. It is the first effort in using firewall traffic log information
to design and optimize firewall rules sets. Both rule set based
and traffic based optimizations are integrated in our firewall
accelerating tool. The paper also introduces a novel adaptive
anomaly detection/countermeasure mechanism to deal with
short term and long term anomalies. We have started our
efforts to validate the size and cost metrics and the opti-
mization results. Furthermore, we are working on an efficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial operational
(unoptimized)

Rule set based
optimization

Traffic based w/o online
adaptation

Traffic based with online
adaptation

Techniques

N
um

be
r

of
 r

ul
es

 in
 p

er
ce

nt
ag

e

Fig. 9: Traffic Based Optimization: Size-based

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial operational
(unoptimized)

Rule set based
optimization

Traffic based w/o online
adaptation

Traffic based with online
adaptation

Techniques
C

os
t i

n
pe

rc
en

ta
ge

Fig. 10: Traffic Based Optimization: Cost-based

implementation for the algorithms to reduce the processing
overheads of optimizations in the existing prototype. As future
work we intend to use other ISP datasets and firewalls to
study, optimize and validate our approaches. We would also
be extending our optimization ideas on other types of firewalls
(not only list based ones). We believe this paper is the first
step in the design of a complete accelerating toolkit for firewall
optimization.

References
[1] T. V. Lakshman and D. Stidialis, “High speed policy-based packet

forwarding using efficient multi-dimensional range matching,” in In
Proceedings of SIGCOMM. ACM Press, 1998.

[2] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” inIn Proceedings of SIGCOMM. ACM Press, 1999.

[3] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Network and Service Management, vol. 1, no. 1,
Apr 2004.

[4] P. Eronen and J. Zitting, “An expert system for analyzingfirewall rules,” in
Proceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec
2001), Copenhagen, Denmark, Nov. 2001, pp. 100–107.

[5] E. W. Fulp, “Optimization of network firewalls policies using directed
acyclic graphs,” inProceedings of the IEEE Internet Management Con-
ference, 2005.

[6] J. Qian, S. Hinrichs, and K. Nahrstedt, “ACLA: A framework for access
control list (acl) analysis and optimization,” inCommunications and
Multimedia Security, 2001.

[7] M. Condell and L. Sanchez, “On the Deterministic Enforcement of Un-
ordered Security Policies ,” BBN Technical Memorandum No. 1346, April
26, 2004.

[8] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg, “A Traffic-
Aware Framework and Optimization Strategies for Large Scale Enterprise
Networks,” Technical Report, pp. 1–20, September 2005.

[9] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and
Y. Zhang, “Experience in measuring backbone traffic variability: Models,
metrics, measurements and meaning,” inIMW ’02: Proceedings of the
2nd ACM SIGCOMM Workshop on Internet Measurement. New York,
NY, USA: ACM Press, 2002, pp. 91–92.

