
Optimizing Network Performance In Replicated Hosting

Ningning Huy Oliver Spatscheckx Jia Wangx Peter Steenkistey

hnn@cs.cmu.edu spatsch@research.att.com jiawang@research.att.com prs@cs.cmu.edu

y Carnegie Mellon University, Pittsburgh, PA 15213, USA
x AT&T Labs – Research, Florham Park, NJ 07932, USA

Abstract

Most important commercial Web sites maintain multiple
replicas of their server infrastructure to increase both reli-
ability and performance. In this paper, we study how many
replicas should be used and where they should be placed
in order to improve client network performance, including
both the latency (e.g., round-trip time) between clients and
the replicas, and the bandwidth performance between them.
This study is based on a large scale measurement study from
an 18-node infrastructure, which reveals for the first time
the distribution of today’s Internet end-user access band-
width. For example, we find that 50% of end users have
access bandwidth less than 4.2Mbps. Using a greedy algo-
rithm, we show that the first five replicas dominate latency
optimization in our measurement infrastructure, while the
first two replicas dominate bandwidth optimization. We also
found that geographic diversity does not help as much for
bandwidth optimization as it does for latency. To determine
the proper trade-off between latency and bandwidth, we use
a simplified TCP model to show that, when content size is
less than 10KB, the deployment should focus on optimizing
latency, while for content sizes larger than 1MB, the deploy-
ment should focus on optimizing bandwidth.

1 Introduction

It is increasingly common for content providers to use
replication to increase the reliability and performance of
their server infrastructure. Some content providers use
commercial Content Distribution Networks (CDNs) [22] to
achieve this goal, while others replicate their server infras-
tructure in multiple locations. Most large content providers
use both techniques depending on the type and the value
of the content delivered. In this paper, we focus on the
latter method, i.e., replicating the whole server infrastruc-
ture. This technique has two advantages over CDNs. First,
replicating the entire server infrastructure (we will calleach
replicated server areplica) at multiple sites not only al-

lows the content to be delivered from multiple locations, but
also allows the content provider to perform more compli-
cated tasks such as securing e-commerce transactions which
require real time database access. Second, unlike CDNs
which require a master server as the content origin, replicas
allow the content provider to operate seamlessly if one of
its replicas is not available.

In this paper we focus on how replication can improve
performance. The most direct metric for optimizing con-
tent replications is content download time. However, it is
impossible to measure download time from a collection of
possible replicas toeveryclient on the Internet. To address
this problem, multiple solutions have been proposed includ-
ing the use of geographic location [19], network mapping
services [7], and network hops and latency [6, 23, 4, 18]. In
this paper, we estimate the download time for objects of var-
ious sizes by measuring the round-trip time (RTT) and the
available bandwidth to each prefix using Pathneck [8]. In
our optimization, we consider both the overall performance
and the performance of the 20% worst destinations.

Our contributions are four-fold. First, we show that most
hosts access the Internet through relatively low bandwidth
links and for these hosts, replica selection based on band-
width has no benefit. Second, for well-provisioned hosts,
the first two replicas provide most of the improvement that
can be gained from bandwidth optimization, while we will
need five replicas for RTT optimization. Third, we demon-
strate that replica placement to optimize bandwidth does not
follow a clear geographic pattern, while RTT optimization
does. Fourth, we use a simple TCP data transmission model
to show that when the content size is less than 10KB, the
replica deployment should minimize RTT; when the content
size is larger than 1MB, the deployment should maximize
bandwidth.

The remainder of the paper is structured as follows. We
describe our measurement methodology in Section 2, and
summarize our measurement results in Section 3. We then
present the results of both bandwidth and RTT optimization
under different application scenarios in Section 4. Section 5
uses a simplified TCP model to evaluate the trade-off be-



21 15 1215

measurement
packets

measurement
packets

60B

60 packets 

load packets

255 255 255

500B TTL 30 packets

ICMP ECHO packet

Figure 1. Probing packet train of the modified
Pathneck

tween RTT and bandwidth optimization. Finally, we present
the related work in Section 6 and conclude in Section 7.

2 Methodology

In this section, we first briefly review the measurement
tool that we used. We then describe our measurement in-
frastructure followed by a discussion of the implications of
our methodology.

2.1 Measurement Tool–Pathneck

Our measurement data was obtained using Pathneck [8],
which is an active probing tool that allows end users to ef-
ficiently and accurately locate bottleneck links on the In-
ternet. Pathneck is based on a novel way of construct-
ing a probing packet train–Recursive Packet Train, which
combines load packets and measurement packets. The load
packets interleave with background traffic, which affects the
length of the Pathneck train. The change in train length pro-
vides information about the available bandwidth on a link.
The measurement packets have carefully controlled TTL
values, so that the ICMP packets generated when packets
expire can be used by the source to estimate the length of
the train at every hop in the network path. Pathneck can
estimate the bottleneck location and an upperbound on the
available bandwidth on the bottleneck link (and thus the
path). Similar to traceroute, it also measures the route and
the RTT. Details on Pathneck can be found elsewhere [8].

A problem with the original Pathneck tool is that it can-
not measure the last hop of Internet paths, which are good
candidate bottlenecks. For our measurement, we modified
the Pathneck tool to alleviate this problem. The idea1 is to
use ICMP ECHO packets instead of UDP packets as the
measurement packets for the last hop. For example, the
packet train in Figure 1 is used to measure a 15-hop path. If
the destination replies to the ICMP ECHO packet, we can

1It was originally suggested by Tom Killlian from AT&T Labs–
Research.

Table 1. Measurement source nodes
ID Location ID Location ID Location

S01 US-NE S07 US-SW S13 US-NM
S02 US-SM S08 US-MM S14 US-NE
S03 US-SW S09 US-NE S15 Europe
S04 US-MW S10 US-NW S16 Europe
S05 US-SM S11 US-NM S17 Europe
S06 US-SE S12 US-NE S18 East-Asia
NE: northeast, NW: northwest, SE: southeast, SW: southwest
ME: middle-east, MW: middle-west, MM: middle-middle

obtain the gap value on the last hop. In order to know where
the ICMP packets should be inserted in the probing packet
train, Pathneck first uses traceroute to get the path length.
Note that this Pathneck modification works only for Inter-
net destinations that reply to ICMP ECHO packets.

2.2 Measurement Infrastructure

In our measurement, we used 18 measurement sources
(Table 1), 14 of which are in the US, 3 are in Europe, and
1 is in East-Asia. All the sources directly connect to a large
Tier-1 ISP (referred asX) via 100Mbps Ethernet links. In
this paper, we consider these 18 sources as the candidate
locations that an application can use to replicate its server
infrastructure. In the rest of this paper, we also refer to these
sources asreplicas.

The measurement destinations are selected as follows.
Our goal is to cover as many diverse locations on the In-
ternet as possible. We select one IP address as the mea-
surement destination from each of the 164,130 prefixes ex-
tracted from a BGP table. Ideally, the destination should
correspond to an online host that replies to ping packets.
However it is difficult to identify online hosts without prob-
ing them. In our study, we partially alleviate this problem by
picking IP addresses from three pools of existing data sets
collected by the ISP: Netflow traces, client IP addresses of
some Web sites, and the IP addresses of a large set of local
DNS servers. That is, for each prefix, whenever possible,
we use one of the IP addresses from those three sources in
that prefix; otherwise, we randomly pick an IP address from
that prefix. In this way, we are able to find reachable desti-
nation in 67,271 of the total 164,130 prefixes.

We collected Pathneck data from the 18 sources to the
164,130 selected destinations from August 28, 2004 to
September 30, 2004. Note that for those unreachable des-
tinations, we only have partial path information. Ideally,
the partial paths would connect the measurement sources to
a commonjoin nodethat is the last traced hop from each
source, so the join node stands in for the destination in a
consistent way. Unfortunately, such a join node may not



exist, either because there may not be a node shared by all
the 18 measurement sources to a given destination or the
shared hop may not be the last traced hop. For this reason,
we relax the constraints for the join node: the join node only
needs to be shared by 14 measurement sources, and it need
only be within three hops from the last traced hop. Here
“14” is simply a reasonably large number that we choose.
This allows us to make the best of the available data while
still having comparable data. Specifically, this allows us
to include over 141K destinations (86% of the total) in our
analysis, among which 47% are real destinations, and 53%
are join nodes. We refer to these 141K destinations asvalid
destinations.

2.3 Applicability to Other ISPs

Since all our measurement sources are connected to the
same ISPX , our analysis results could easily be specific
to ISPX . However, we believe that the results are more
broadly applicable. The intuition is that the widely used
“hot-potato” routing approach forces packets to quickly en-
ter other ISPs’ networks if they need to traverse those net-
works to reach their destinations. For those packets, the
time spent in ISPX is very small. Since ISPX is very well
engineered and its links rarely appear as bottlenecks in our
measurements, ISPX is largely “transparent” in these cases
and our measurement sources can be considered as reason-
able vantage points for those ISPs.

To validate this intuition, we pick 7 top Tier-1 ISPs peer-
ing with ISPX from Keynote [3]; 5 of the ISPs are in the US
and 2 are in Europe. 64% of all the paths enter these ISPs
directly from ISPX . Figure 2 shows the time spent within
X (referred asexit time) by the packets on those paths. The
top graph shows the median (middle circle), 10th percentile
(bottom bar, generally overlapped with the circle), and 90th
percentile (top bar) values of the exit time for all the mea-
surement sources. It is not surprising thatS15, S16, S17,
andS18 have large exit times since they are in Europe or
East-Asia, and have to use the trans-atlantic/pacific linksto
reach the peering points. The bottom graph shows the me-
dian, 70th percentile, and 90th percentile values of the exit
time distributions for the 14 measurement sources located
in the US. For each measurement source, over 70% of the
paths have exit times less than15ms; most of them are less
than 10ms. The small exit times confirm our claim that
our measurement setup and the corresponding analysis are
also useful for the scenario where the replicas are located
at sources connected to other major Tier-1 ISPs, and the
scenario where the whole replicated service is located at a
source which multihomes to all major Tier-1 ISPs.

0 5 10 15 20
0

50

100

150

Source node ID

E
xi

tin
g 

tim
e 

(m
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

Source node ID

E
xi

tin
g 

tim
e 

(m
s)

50%

70%

90%

Figure 2. The exit times to neighbor ISPs.

3 Performance of Individual Replica

In this section, we look at the RTT and bandwidth per-
formance from each individual replica to all destinations to
understand their potential in improving RTT and bandwidth
performance.

3.1 RTT Performance

Figure 3 shows the cumulative distribution (CDF) of
RTT measurements from individual replicas. For the sake
of clarity, we only plot the measurements for three repli-
cas: S01, S17, andS18, which are in the United States,
Europe, and East Asia, respectively. The curve labeled with
“best” corresponds to the optimal performance using all 18
replicas, i.e., the smallest RTT from all 18 replicas. We can
see that RTT can be significantly improved by using multi-
ple replicas. In addition, the performance of using a single
replica varies depending on its location. These results show
how the physical location of replicas plays an important role
in RTT optimization.

3.2 Bandwidth Performance

Figure 4 illustrates the cumulative distributions of band-
width measurements. Because Pathneck only provides an
upper-bound of path available bandwidth, the bandwidth
distributions shown in Figure 4 are upper-bounds for the ac-
tual bandwidth distributions. Compared with Figure 3, we



0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

best S01 S17 S18

round trip time (ms)

C
D

F

Figure 3. RTT performances from individual
replicas

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

best

S01
S17S18

available bandwidth (Mbps)

C
D

F

Figure 4. Bandwidth performances from indi-
vidual replicas

see that the “best” curve also shows an improvement over
those for individual replicas, but the difference among in-
dividual replicas is less pronounced. This implies that geo-
graphic diversity may not play as important a role for band-
width optimization.

The above observation from Figure 4 is mainly due to the
fact that bottlenecks on most of the measured paths are on
the last few hops, and different replicas often share bottle-
necks. Figure 5 plots the distribution of bottlenecks for the
67,271 destinations of which the last hop can be measured
by Pathneck. Thex-axis is the hop distance from bottleneck
hop to destination, they-axis is the percentage of destina-
tions in each category. We observe that 75% of destinations

0 5 10 15 20
0

20

40

distance to destination

pe
rc

en
ta

ge

Figure 5. Bottleneck location distribution

have bottleneck on the last two hops, and 42.7% on the last
hop.

Replicas can improve bandwidth performance if paths
from different replicas to a destination have different bot-
tlenecks and have different bottleneck bandwidths. Unfor-
tunately, we find that in most cases the replicas either share
bottlenecks, or have different bottleneck locations but the
bottleneck links have very similar bandwidths. This leaves
us little opportunity to improve bandwidth performance us-
ing replicas for end users. In some cases, we do observe
different bottleneck bandwidths from different replicas,but
that is because of traffic-load changes instead of bottle-
neck location changes. That is, the difference between the
“best” curve in Figure 4 and those from individual replicas
is mainly due to traffic-load changes.

To filter out the impact of traffic-load changes on band-
width distribution, we select a bandwidth measurement for
each destination that is most representative among those
from all 18 replicas. This is done by splitting the 18 band-
width measurements into several groups, and by taking
the median value of the largest group as the representa-
tive bandwidth. The group is defined as the follows. Let
G be a group, andx be a bandwidth value,x 2 G iff
9y; y 2 G; j(x � y)=yj < 0:3. Figure 6 plots the dis-
tribution of the representative available bandwidths for the
67,271 destinations for which Pathneck can measure the last
hop. To the best of our knowledge, this is the first result
on the distribution of Internet-scale end-user access band-
width. We observe that 40% of destinations have bottleneck
bandwidth less than 2.2Mbps, 50% are less than 4.2Mbps,
and 63% are less than 10Mbps. These results show that
small capacity links still dominate Internet end-user con-
nections. In such cases, it is difficult to use replicas to im-
prove bandwidth performance because bottlenecks are very
likely due to small-capacity last-mile links such as DSL,
cable-modem, and dial-up links.

For the destinations with bottleneck bandwidth larger
than 10Mbps, the bottleneck bandwidth is almost uniformly
distribute in the range of [10Mbps, 50Mbps]2. For these

2The distribution curve in Figure 6 ends at 55.2Mbps. This is abias
introduced by our measurement infrastructure. The sendingrates from our



0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

available bandwidth

C
D

F

Figure 6. Distribution of Internet end-user ac-
cess bandwidth

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

55

0

0

0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3
3

3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4

4

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5

5 5 5 5 5 5 5 5
5

5
5 5 5 5 5 5 5 5 5

distance to destination

pe
rc

en
ta

ge

Figure 7. Bottleneck distribution for destina-
tions with different available bandwidth

destinations, high-bandwidth bottlenecks are more likely
to be determined by link load instead of by link capac-
ity, and bottlenecks more frequently appear in the mid-
dle of paths. This observation is illustrated in Figure 7,
where we split the 67,271 destinations used in Figure 5
into different groups based on bottleneck bandwidth, and
plot the distribution of bottleneck locations for each group.
The curve marked with “i” represents the group of desti-
nations which have bottleneck bandwidth in the range of
[i � 10Mbps; (i + 1) � 10Mbps). We can see that while
groups0 � 3 have distributions very similar with that

replicas are generally less than 60Mbps, which determines the maximum
bottleneck bandwidth that we can detect.

shown in Figure 5, groups 4 and 5 are clearly different. For
example, 62% of destinations in group 5 have bottlenecks
that are over 4 hops away from the destinations, where dif-
ferent replicas have a higher probability of having different
routes and thus different bottlenecks. Section 4.3 discusses
how to make use of this opportunity to avoid bottlenecks by
using different replicas for different destinations.

4 Optimizing RTT and Bandwidth

We have seen that replicas have the potential to improve
RTT performance for most destinations, and to improve
bandwidth performance for well provisioned destinations.
In this section, we present an algorithm that allows us to
select replicas to optimize client performance. We then use
this algorithm to study how to improve RTT and bandwidth
using our measurement infrastructure.

4.1 The Greedy Algorithm

To optimize client performance using replicas, we need
to know how many replicas we should use and where they
should be deployed. The goal is that the selected set of repli-
cas should have performance very close to that achieved by
using all replicas. A naive way is to consider all the possible
combinations of replicates when selecting the optimal one.
Given that there are218 � 1 (i.e., 262,143) different com-
binations for 18 replicas, and each replica measures over
160K destinations, the time of evaluating all combinations
is prohibitively high. Therefore, we use a greedy algorithm,
which is based on a similar idea as the greedy algorithm
used in Qiu et.al. [21]. This algorithm only needs polyno-
mial processing time, but can find a sub-optimal solution
very close to the optimal one. We now explain how to apply
this algorithm on the data sets we have.

The intuition behind the greedy algorithm is to always
pick the best replica among the available replicas. For ex-
ample, in Figure 3,S01 is better thanS17 andS18 for RTT
optimization, soS01 should be selected before the other
two. In this algorithm, the “best” is quantified using a met-
ric calledmarginal utility. In the following, we explain how
this metric is computed.

We use RTT optimization as the example. Assume that at
some point, some replicas have already been selected. The
best RTT from among the selected replica to each destina-
tion is given byfrtt

i

j0 � i < Ng, whereN � 160K is the
number of destinations, andrtt

i

is the smallest RTT that is
measured by one of the replicas already selected to desti-
nationi. Let fsrtt

i

j0 � i < Ng be the sorted version of
frtt

i

g. We can now computertt sum as:

rtt sum =

99

X

k=0

srtt

index(k)



where

index(k) =

N � (k + 1)

101

� 1

Intuitively, fsrtt
i

j0 � i < Ng corresponds to thex-
axis values of the points on the CDF curves in Figure 3,
andrtt sum corresponds to the area enclosed by the CDF
curve, the lefty-axis, and the topx-axis.

There are two details that need to be explained in the
above computation. First, we cannot simply add all the
individual measurement when calculatingrtt sum. This
is because by definition, a joint node is not necessarily
shared by all the measurement sources, so introducing a
new replica could bring in measurements to new destina-
tions, thus changing the value ofN . Therefore, we cannot
simply add allrtt

i

since the data sets would be incompa-
rable. In our analysis, we add 100 values that are evenly
distributed on the CDF curve. Here, the number “100” is
empirically selected as a reasonably large value to split the
curve. Second, we split the curve into 101 segments us-
ing 100 splitting points, and only use the values of these
100 splitting points. That is, we do not use the two end
values—srtt

0

andsrtt
N�1

, whose small/large values are
very probably due to measurement error.

Suppose a new replicaA is added, manyrtt
i

can change,
and we compute a newrtt sum

A

. The marginal utility of
A is then computed as:

marginal utility =

jrtt sum� rtt sum

A

j

rtt sum

With this definition, the replica selected in each step is the
one that has the largest marginal utility. For the first step,
the replica selected is simply the one that has the smallest
rtt sum. In the end, the algorithm generates areplica se-
lection sequence:

v

1

; v

2

; :::; v

18

wherev
i

2 fS01; S02; :::; S18g. To selectm(< 18) repli-
cas, we can simply use the firstm replicas in this sequence.

For bandwidth optimization, the greedy algorithm works
in a similar way exceptbw

i

should be thelargestbandwidth
measured from one of the selected replicas. This greedy
algorithm has polynomial processing time, but only gives
a sub-optimal solution. In the following section, we will
show that the greedy algorithm produces solutions that are
very close to optimal.

4.2 RTT Optimization

As demonstrated in Section 3.1, RTT performance is
closely related with replica location. In this section, we look
at the number of replicas needed to improve RTT.

Figure 8 shows the results of RTT optimization using our
greedy algorithm on all valid destinations. The top figure

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

9

9

9

18

18

18

rtt (ms)

%
 o

f p
re

fix
es

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

number of sources
R

T
T

 m
ar

gi
na

l u
til

ity

Figure 8. RTT optimization using greedy algo-
rithm.

plots the cumulative distribution of RTT with different num-
bers (marked on the curves) of replicas. For clarity, we only
plot the results when RTT< 300ms, though some RTTs are
as large as 3 seconds. The bottom figure plots the marginal
utility for each new replica added3. Clearly, the first five
replicas improve the performance most significantly. The
marginal utilities from additional replicas are all less than
5%.

In addition, it is interesting to note the different pat-
terns of RTT improvement with each of the first five repli-
cas added. As we can see from the top figure, adding
the second replica improves RTT over a very large range
[30ms, 300ms], though the improvement in the range
[50ms, 100ms] is the largest. Adding the third replica
mainly improves RTT in the ranges [30ms, 100ms] and
[150ms, 250ms]; adding the fourth replica improves RTT
in the range [70ms, 200ms], but with a slightly lower mag-
nitude; and adding the fifth replica improves RTT in the
range [10ms, 50ms], with a further reduced magnitude.

Not surprisingly, these differences are mainly due to the
different geographic locations of the replicas. As listed in

3This curve starts from the second replica because the first one is se-
lected using a different method. Also the marginal utility of the third se-
lected source is larger than that of the second. This is possible because in
the marginal-utility formula thertt sum used to select the third source is
less than that used to select the second.



the row labeled “rtt-all” in Table 2—the first five are from
US east-coast, Europe, US west-coast, East Asia, and US
middle, respectively, which are consistent with common in-
tuition. If we consider these geographic locations together
with the delay range that is most improved by each replica,
we can gain a better understanding of how replicas con-
tribute to the performance improvement for destinations in
different physical locations.

The greedy algorithm theoretically only provides sub-
optimal solutions. To understand how well it approximates
the optimal solution, we compare the results in Figure 8
with the best solution obtained using a brute-force search.
Obviously, brute-force search can not explore all the possi-
ble combinations of the 18 replicas, as explained before.
However, we have seen that the first five replicas domi-
nate performance gains. Given the computing resources we
have, we can go through all possible four-replica combi-
nations in five hours. Therefore, we compute thertt sum

values for all four-replica combinations, and select the best
one to compare with the first four replicas selected by our
greedy algorithm. Using this method, we find that the so-
lution obtained using our greedy algorithm for RTT opti-
mization is the 7th best among all of the 3,060 four-replica
combinations, and it is only 0.1% worse than the best so-
lution (S04 S14 S16 S18). Such small difference shows
that the greedy algorithm indeed finds a solution close to
the optimal one.

4.3 Bandwidth Optimization

Section 3.2 shows that replicas have higher probability to
improve bandwidth performance for well provisioned des-
tinations, since they have higher probability to experience
different bottlenecks for such destinations. In this section,
we use the greedy algorithm to study how to make use of
this opportunity. We look at two cases. In the first case, we
only use the 23,447 destinations where Pathneck can mea-
sure the last hop, and the bottleneck bandwidth is higher
than 40Mbps. In the second case, we include all valid des-
tinations.

The results of the first case study are shown in Fig-
ure 9. It shows the cumulative distribution of path band-
width upper-bounds with varying numbers of replicas. We
can see that the bandwidth improvement from replicas is
indeed significant. For example, with a single replica,
there are only 26% paths that have bandwidth higher than
54Mbps, while with all 18 replicas, the percentage increases
to 65%.

An obvious problem for the first case study is that it only
covers around 16% of the paths that we measured, thus the
results could be biased. To do a more general study, we
apply the greedy algorithm on all the valid destinations,
but exclude last-mile bottlenecks. In other words, we do

40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

45

9

1318

available bandwidth (Mbps)

%
 o

f p
re

fix
es

Figure 9. Bandwidth optimization for well pro-
visioned destinations.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1

2

2

3

3

4

4

5

5

9

9

13

13

18

18

available bandwidth (Mbps)

%
 o

f p
re

fix
es

2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

number of sources

ba
nd

w
id

th
 m

ar
gi

na
l u

til
ity

Figure 10. Bandwidth optimization for all valid
destinations.

a “what if” experiment to study what would happen if last-
mile links were upgraded. That is, for those destinations
where Pathneck can measure the last hop, we remove the
last two hops; this is based on the observation in Figure 5
that 75% paths have bottlenecks on the last two hops. For
the others, we use the raw measurement results. Figure 10



Table 2. The replica selection sequence (with location code ) determined by the greedy algorithm

ID Replica selection sequence Reference
rtt-all S14 S17 S04 S18 S11 S05 S16 S01 S06 S07 S15 S10 S08 S12 S02 S03 S13 S09 Section 4.2

NE Eu MW As NM SM Eu NE SE SW Eu NW MM NE SM SW NM NE

bw-all S03 S17 S04 S16 S12 S15 S01 S05 S18 S07 S13 S10 S08 S14 S11 S02 S09 S06 Section 4.3
SW Eu MW Eu NE Eu NE SM As SW NM NW MM NE NM SM NE SE

rtt-us S11 S04 S12 S05 S14 S07 S06 S10 S01 S03 S08 S09 S02 S13 Section 4.4.2
NM MW NE SM NE SW SE NW NE SW MM NE SM NM

rtt-20 S04 S12 S18 S17 S16 S07 S06 S15 S10 S01 S03 S05 S14 S08 S02 S09 S11 S13 Section 4.4.3
MW NE As Eu Eu SW SE Eu NW NE SW SM NE MM SM NE NM NM

NE: US northeast,NW: US northwest,SE: US southeast,SW: US southwest,ME: US middle-east,MW: US middle-west
MM: US middle-middle,Eu: Europe,As: Asia

includes the results from the greedy algorithm when consid-
ering all destinations. The row “bw-all” in Table 2 lists the
replica selection sequence from the greedy algorithm, and
the marginal utility from each replica. We can see that the
bandwidth improvement spreads almost uniformly in the
large range [5Mbps, 50Mbps]. If using 5% as the thresh-
old for marginal utility, only the first two replicas selected
significantly contribute to the bandwidth performance im-
provement. From the row “bw-all” in Table 2, we note
that geographic diversity does not play an important role.
All these observations are very different from the results for
RTT optimization.

4.4 Variants of RTT Optimization

In this section, we briefly present the results from three
variants of the RTT optimization problem discussed in Sec-
tion 4.2.

4.4.1 Weighting Destinations Using Web Server Load

So far we have assumed that clients from different prefixes
have equal probability to request service, but this is not the
case for many Internet services. To consider non-uniform
client distributions, we obtained client request logs from
five popular Web sites in the US to weight the RTT measure-
ments. That is, the raw RTT to each destination is weighted
using the total amount of packets exchanged with the clients
that share the same prefix with the destination in our mea-
surements.

The statistics of these Web logs are listed in columns 2-4
in Table 3. We can see that the client population only covers
5�10% of the prefixes that we measured. To weight the
RTT measurements, we first compute the number of packets
sent from a Web site to each of its clients. We then cluster
these clients based on their network prefixes, obtain the total
number of packets exchanged with each prefix (denoted as

pkt

i

for prefix i). If the RTT to prefixi is measured asrtt
i

,
we use(rtt

i

�pkt

i

) as the input to the greedy algorithm. We
do not consider those prefixes which do not have any clients
in the Web logs. Bandwidth measurements are weighted in
similar way.

Applying the greedy algorithm on the weighted RTT val-
ues shows that the first five replicas still dominate the RTT
performance improvement. However, the replica selection
sequences, as listed in the last column of Table 3, are very
different from those obtained when giving all prefixes equal
weight. First, the replicas outside the US are less important.
Second, for all five Web sites, the first four replicas are al-
ways from NE, NM, SM, SW/MW, i.e., evenly distributed
in the US. This clearly indicates that the client distributions
of these Web sites are biased toward US users.

4.4.2 US Replicas Only

To consider the scenarios where deploying a replica out-
side the US is hard, we look at the case where we only use
the 14 replicas inside the US. Using the same method as
that in Section 4.2, we obtain the results as shown in Fig-
ure 11 and the “rtt-us” row in Table 2. The dashed curve
in the top graph of Figure 11 is the RTT performance when
using all 18 replicas; it is copied from Figure 8 for com-
parison. We can see that only 55% of paths have RTT less
than 50ms when using the US-only replicas, which is 13%
worse than that when using all 18 replicas. Second, compar-
ing with the brute-force solutions obtained in Section 4.2,
the performance from the first four replicas selected here is
25% worse than the greedy-algorithm solution when using
all replicas. These two results quantify the importance of
replicas in Europe and East-Asia for RTT optimization. Fi-
nally, with the US-only replicas, only the first three replicas
have marginal utilities larger than 5%, and they are from the
middle, the east coast, and the west coast of the US, which
again highlights the importance of diverse geographic loca-



Table 3. Replica selection sequence weighted by Web server l oad (measured in 47 hours)

Number of Load Load
prefixes (byte) (pkt) RTT

Web1 9759 235G 369M S14 S05 S07 S11 S06 S17 S04 S01 S12 S10 S03 S08 S15 S09 S18 S02 S16S13
Web2 16412 163G 337M S14 S07 S11 S05 S15 S04 S18 S06 S01 S10 S16 S08 S12 S03 S09 S17 S02S13
Web3 16244 157G 182M S11 S14 S04 S05 S01 S07 S06 S17 S10 S08 S02 S18 S12 S09 S16 S13 S03S15
Web4 8113 23G 203M S14 S05 S04 S11 S06 S17 S07 S01 S08 S12 S10 S16 S02 S13 S18 S09 S03S15
Web5 17484 124G 157M S14 S07 S11 S05 S17 S06 S04 S12 S18 S10 S01 S15 S08 S16 S03 S02 S09S13

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1

1

2

2

2

3

3

3

4

4

4

14

14

14

18

18

18

rtt (ms)

%
 o

f p
re

fix
es

2 4 6 8 10 12 14
0

0.05

0.1

number of sources

R
T

T
 m

ar
gi

na
l u

til
ity

Figure 11. RTT optimization using only repli-
cas in the US.

tions for RTT optimization.

4.4.3 Optimizing The Worst Performance

A previous study [12] has pointed out that CDNs can im-
prove performance by simply avoiding directing clients to
the worst replica. Based on this observations, we look at
how well the infrastructure works if we focusing on im-
proving the clients that have the worst performance. Specif-
ically, we computertt sum in such a way that only the
worst 20% of the destinations are included, and then select
the replica that can optimize this metric. The “rtt-20” row
in Table 2 lists the replica selection sequences. The main
difference with the results that consider all destinationsis

that there is one more European node in the top five repli-
cas. Compared with the brute-force solution obtained in
Section 4.2, the performance of the first four replicas is only
1.3% worse than that of the optimal four-replica set. Over-
all, we did not see a major improvement compared with the
case where all destinations are considered.

5 Performance of Applications

The analysis in the previous section has shown that repli-
cas can significantly improve RTT performance, but have
much less impact on bandwidth performance due to bottle-
neck sharing. However, the performance of network appli-
cations is determined by data transmission time, which de-
pends not only on RTT and available bandwidth, but also on
data size. In this section, we consider these three factors to
study the benefit of using replicas to reduce data transmis-
sion time. Below we first provide a simplified TCP model
to characterize data transmission time as a function of avail-
able bandwidth, RTT, and data size. We then look at the
transmission-time distribution for different data sizes with
different number of replicas.

5.1 Simplified TCP Throughput Model

Simply speaking, TCP data transmission includes two
phases: slow-start and congestion avoidance [9]. During
slow-start, the sending rate doubles every roundtrip time,
because the congestion window exponentially increases.
During congestion avoidance, the sending rate and the con-
gestion window only increase linearly. These two algo-
rithms, together with the packet loss rate, can be used to de-
rive an accurate TCP throughput model [20]. However, we
can not use this model since we do not know the packet loss
rate, which is very expensive to measure. Instead, we build
a simplified TCP throughput model that only uses band-
width and RTT information.

Our TCP throughput model is as follows. Let the path
under considered have available bandwidthabw (Bps) and
roundtrip timertt (second). Assume that the sender’s TCP



congestion window starts from 2 packets and that each
packet is 1,500 bytes. The congestion window doubles ev-
ery RTT until it is about to exceed the bandwidth-delay
product of the path. After that, the sender sends data at
a constant rate ofabw. This transmission algorithm is
sketched in the code segment shown below. It computes
the total transmission time (t

total

) for x bytes of data along
a path.

cwin = 2 * 1500;

t_ss = 0; t_ca = 0;

while (x > cwin && cwin < abw * rtt) {

x -= cwin;

cwin *= 2;

t_ss += rtt;

}

if (x > 0) t_ca = x / abw;

t_total = t_ss + t_ca;

wheret ss andt ca are the transmission time spent in the
slow-start phase and the congestion avoidance phase, re-
spectively. We say the data transmission isrtt-determinedif
t ca = 0. We can easily derive the maximum rtt-determined
data size as

2

blog

2

(abw�rtt=1500)c+1

� 1500(byte)

In the following, we call this size theslow-start size.
Clearly, when the data is less than the slow-start size, it is
rtt-determined.

This model ignores many important parameters that can
affect TCP throughput, including packet loss rate and TCP
timeout. However, the purpose of this analysis is not to
compute an exact number, but rather to provide a guideline
on the range of data sizes where RTT should be used as the
optimization metric in replica hosting.

5.2 Slow-Start Sizes and Transmission Times

Using the above model, we compute the slow-start sizes
for the 67,271 destinations for which Pathneck can obtain
complete measurements. Figure 12 plots the distributions
of slow-start sizes for the paths starting from each replica.
Different replicas have fairly different performance; differ-
ences are as large as 30%. Overall, at least 70% of paths
have slow-start sizes larger than 10KB, 40% larger than
100KB, and around 10% larger 1MB. Given that web pages
are generally less than 10KB, it is clear that their transmis-
sion performance is dominant by RTT and replica place-
ment should minimize RTT. For data sizes larger than 1MB,
replica deployment should focus on improving bandwidth.

To obtain concrete transmission times for different data
sizes, we use our TCP throughput model to compute data
transmission time on each path for four data sizes: 10KB,

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

splitting size (KB)

C
D

F

Figure 12. Cumulative distribution of the
slow-start sizes

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1
1

1

2
2

2

55

5

99

9

1818

18

%
 o

f p
re

fix
es

xfer time (s) for 10KB
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1
1

1

22

2

55

5

99

9

18
18

18

%
 o

f p
re

fix
es

xfer time (s) for 100KB

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

11

1

22

2

55

5

99

9

1818

18

%
 o

f p
re

fix
es

xfer time (s) for 1MB
0 100 200 300

0

0.2

0.4

0.6

0.8

1

11

1

22

2

55

5

99

9

1818

18

%
 o

f p
re

fix
es

xfer time (s) for 10MB

Figure 13. Transmission times for different
data sizes

100KB, 1MB, and 10MB. We then use the greedy algorithm
to optimize data transmission times. The four subgraphs in
Figure 13 illustrate the transmission-time distributionsfor
each data size using different number of replicas. These
figures are plotted the same way as that used in Figure 8. If
we focus on the 80 percentile values when all 18 replicas are
used, we can see the transmission times for 10KB, 100KB,
1MB and 10MB are 0.4 second, 1.1 second, 6.4 second,
and 59.2 second, respectively. These results are very useful
for Internet-scale network applications to obtain an intuitive



understanding about their data transmission performance.

6 Related Work

Content replication has been widely applied in real net-
work systems [1, 2]. The replication could be done for the
whole mirror/proxy server, or for selected content objects.
CDNs [22] generally belong to the former, while peer-to-
peer systems [25, 29] belong to the later. Our work is dis-
cussed in the context of server replication, but the results
presented in this paper can also be applied for object repli-
cation.

The key question in content replication is how to deploy
the replicas, including where to replicate and how many
replicas should be used. Multiple solutions have been de-
veloped and two good overviews on these solutions can be
found in [24, 14]. Different solutions often have differ-
ent optimization goals, which include geographic location
[19], network hops and latency [6, 23, 4, 18], retrieval costs
[17, 16], update cost [27, 11], storage cost [5, 15], and QoS
guarantee [26]. Many of the previous work considered two
or three metrics together. For example, [27, 11] considered
update cost and retrieval cost, [5, 15] considered storage
cost and retrieval cost, while [13] considered three metrics:
retrieval, update, and storage cost. More recently, [28] looks
at the opportunities of optimizing a hosting service by deal-
ing with network failures. To the best of our knowledge,
no related work has studied the problem of optimizing bot-
tleneck bandwidth performance. In addition, though prop-
agation delay and transmission time have been considered
by previous work, few of them considered these metrics in
Internet-scale deployments. These are the two main differ-
ences between our work and the previous work, and they
are also the main contributions of this paper.

In our work, we show that the performance gain becomes
minimal after a number of replicas have been deployed.
This is consistent with the observation in [10]. Our work is
distinguished from [10] in the sense that we also study the
geographic factor on replica placement and provide guid-
ance based on the size of content objects.

Independent of the metrics used to optimize content dis-
tribution, greedy algorithms can often provide good solu-
tions. The greedy algorithm proposed in our paper has near
optimal solution. This is also consistent with the conclusion
in [21], which compared several heuristics and found that
a simple greedy algorithm works best. Greedy algorithms
are also used in [26], which developed both “Greedy-Insert”
and “Greedy-Delete” algorithms to solve QoS-aware place-
ment problems.

7 Conclusion

In this paper, we use a set of large scale Internet measure-
ments from 18 geographically diverse measurement sources
to study how to optimize RTT and bandwidth performance
in a content replication system. This set of measurements
reveal for the first time the distribution of end-user access
bandwidth. Based on a greedy algorithm, we show that only
five carefully selected replicas are needed to optimize RTT
performance in our infrastructure, while only two replicas
are needed to optimize bandwidth performance. Moreover,
the replicas selected for RTT optimization have a very clear
geographic distribution, which is not the case for bandwidth
optimization. Using real Web site logs, we also investigate
the impact of Web client distribution on RTT performance
optimization. We observe that the results are significantly
different from those without considering such factor. Fur-
thermore, we use a simplified TCP model to show that when
the dominant data size of a network service is less than
10KB, replica deployment should optimize RTT; when the
dominant data size is larger than 1MB, replica deployment
should optimize bandwidth.

Acknowledgments

Ningning Hu and Peter Steenkiste were in part supported
by the NSF under award number CCR-0205266.

References

[1] Akamai. http://www.akamai.com.
[2] Digital Island. http://www.digitalisland.com.
[3] The Internet health report. http://www1.internetpulse.net.
[4] R. Carter and M. Crovella. Dynamic server selection using

bandwidth probing in wide-area networks. InProc. IEEE
INFOCOM, 1997.

[5] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of
electronic content. InProc. IEEE INFOCOM, April 2001.

[6] S. G. Dykes, K. A. Robbins, and C. L. Jeffery. An empiri-
cal evaluation of client-side server selection algorithms. In
Proc. IEEE INFOCOM, 2000.

[7] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. Idmaps: A global Internet host distance estima-
tion service.IEEE/ACM Transactions on Networking, Octo-
ber 2001.

[8] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locating
Internet bottlenecks: Algorithms, measurements, and impli-
cations. InProc. ACM SIGCOMM, August 2004.

[9] V. Jacobson. Congestion avoidance and control. InProc.
ACM SIGCOMM, August 1988.

[10] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt. Con-
strained mirror placement on the internet. InProc. IEEE
INFOCOM, April 2001.



[11] X. Jia, D. Li, X. Hu, W. Wu, and D. Du. Placement of web-
server proxies with consideration of read and update oper-
ations on the internet.The Computer Journal, 46(4), July
2003.

[12] K. Johnson, J. Carr, M. Day, and M. Kaashoek. The mea-
sured performance of content distribution networks. InProc.
of the 5th International Web Caching and Content Delivery
Workshop, May 2000.

[13] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal place-
ment of replicas in trees with read, write, and storage costs.
IEEE Transactions on Parallel and Distributed Systems,
12(6):628–637, June 2001.

[14] M. Karlsson, M. Mahalingam, and C. Karamanolis. A
framework for evaluating replica placement algorithms.
Technical Report HPL-2002-219, HP Laboratories.

[15] M. R. Korupolu and M. Dahlin. Coordinated placement and
replacement for large-scale distributed caches.IEEE Trans-
actions on Knowledge and Data Engineering, 14(6):1317–
1329, 2002.

[16] P. Krishnan, D. Raz, and Y. Shavitt. The cache location prob-
lem. IEEE/ACM Transactions on Networking, 8(5):568–
582, October 2000.

[17] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby.
On the optimal placement of web proxies in the internet. In
Proc. IEEE INFOCOM, April 1999.

[18] P. McManus. A passive system for server selection
within mirrored resource environments using AS path length
heuristics. http://pat.appliedtheory.com/bgpprox/.

[19] NetGeo – the Internet Geographic Database.
http://www.caida.org/Tools/NetGeo/.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-
tion. In Proc. ACM SIGCOMM, September 1998.

[21] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the
placement of web server replicas. InProc. IEEE INFOCOM,
April 2001.

[22] M. Rabinovich and O. Spatscheck.Web Caching and Repli-
cation. Addison-Wesley, 2002.

[23] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek.
Selection algorithms for replicated web servers. InProc. of
the Workshop on Internet Server Performance, June 1998.

[24] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van
Steen. Replication for web hosting systems.ACM Comput.
Surv., 36(3):291–334, 2004.

[25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProc. ACM SIGCOMM, August
2001.

[26] X. Tang and J. Xu. On replica placement for qos-aware con-
tent distribution. InProc. IEEE INFOCOM, April 2004.

[27] J. Xu, B. Li, and D. L. Lee. Placement problems for
transparent data replication proxy services.IEEE Journal
on Selected Areas in Communications, 20(7):1383–1398,
September 2002.

[28] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. Plan-
etseer: Internet path failure monitoring and characterization
in wide-area services. InProc. OSDI, December 2004.

[29] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UCB.


